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Capacitance of Microstrip Lines

with Inhomogeneous Substrate
Jean-Fu Kiang, Member, IEEE

Abstract— A mode-matching approach combined with

Galerkin’s method is proposed in this paper to calculate
the capacitance matrix of microstrip lines embedded in an

inhomogeneous stratified medium. Eigenmodes in each layer

is first solved numerically, and the potential in each layer

can be expressed in terms of these eigenmodes. Coupling

between two sets of eigenmodes in contiguous layers are

described by detking reflection matrices. A Green’s function
is thus obtained in terms of these eigenmode sets to relate the

potential to a line charge. Integral equation is then constructed
relating the charge dktribution and the imposed voltage on the
microstrip surface. Galerkin’s method is next applied to solve the

charge distribution and hence the capacitance matrix. Several
inhomogeneous profiles are studied to understand the effects of
inhomogeneities on the capacitance and relevant parameters.

I. INTRODUCTION

F OR a microstrip deposited at the interafce between a

dielectric and free space, approximate closed form for

capacitance is plausible [1]. Conformal mapping technique has

been applied to calculate the capacitance matrix of several

microstrips lying in the same plane enclosed by a rectangular

conducting box [2].

For several microstrip lines emdedded in different layers of

a stratified medium, numerical methods are often resorted. In

[3]–[5], a spatial domain approach using the free space Green’s

function has been developed to calculate the capacitance and

the inductance matrices of multiconductor transmission lines

located arbitrarily in a multilayered medium of finite extent.

The potential in the medium is expressed in terms of the

free charge at the conductor-dielectric interfaces and the total

charge at the dielectric-dielectric interfaces.

Variational method in the spectral domain has been used to

calculate the capacitance matrix of microstrips in an laterally

open structure [6], [7]. Perfect conductor planes can also be put

aside the whole layered structure to facilitate the analysis, and

the Green’s function within side walls are expressed in terms

of sinusoidal functions with discrete wave numbers [8], [9].

Each dielectric layer is assumed homogeneous in the spec-

tral domain analysis. However, some practical substrate ma-

terials contain inhomogeneities. For example, glass fibers

are implanted within an epoxy circuit board to enhance its

mechanical strength [10]. In [11], two microstrips are built on

a substrate with finite extent. A notch is cut in the substrate
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Fig. 1. Geometrical configuration of a line charge embedded in layer (m)

of a stratified inhomogeneous medium.

amidst two microstrips to reduce their coupling. The dielectric

constant underneath the microstrip can also be increased

locally to focus the power guided by the strip [12]. In such

cases, conventional spectral domain methods do not apply, and

the spatial domain approaches may render too many unknowns

to model the equivalent surface charge especially when the

dielectric constant is a continuous function of coordinates.

In this paper, we will derive an integral equation in the

spectral domain with discrete wave numbers. The kernel is

constructed based on the eigenmodes in each inhomogeneous

layer, which are solved numerically for arbitrary permitivity

profile.

II. FORMULATION

In Fig. 1, we show the configuration of a line charge source

in layer (m) of a stratified medium. The whole structure is

uniform in the y direction. In each layer, the dielectric constant

is a piecewise continuous function of x and is independent of

z. Two perfect electric conductor walls are located at x := O

and x = a as the potential reference.

In the electroquasi-static (EQS) limit [13], potential in layer

(m) in the absence of charge source is obtained by solving

the following Laplace’s equation

( )%’(+40: +g 4(X, ~) =0. (1)
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By separation of variables, +(z, z) can be expressed as a

product of o(~)q(z), and (1) is reduced to

Next, choose asetofbasis functions SP(a)= @sin(a&)

with ffP = pn/a. These basis functions have orthonormal

properties that (Sg (z), SP(x)) = 8~P where the inner product

is defined over the interval [0, a]. Expand the nth eigensolution

&(z) by these basis functions as ~~(z) = ~~=1 &pSP(Z),

and substitute it into (2). Take the inner product of S~(z) with

the resulting equation and apply the orthonormality property

of SP(Z)’S to obtain

N

p=l

From (3), N eigenvalues k: and their associated eigenvectors

bm can be obtained. These eigensolutions are normalized to

have

(’ik(~),%(~)’#s(~))= b:”L “i (4)
—

where the (g, p)th element of;~ is (Sg(~), en(~) SP(Z)).

Next, consider a line charge with density PO located at

(x,, ZO) in layer (m) of the stratified medium. In the absence of

other layers, the potential is obtained by solving the Poisson’s

equation

(5)

The solution ~(x, z) can be expressed in terms of the eigen-

solutions VP(x) as

4($) ~) = f @@p(z) @p(zo)e-~’l’-zol
,=, 2kp

where Em= diag . [kl, k2, . . . ,kN], e-=~l”-””l =

diag . [e-kllz-zol, ~-k,lz-zol , e-kNlz-zo/] and

@L(~) = [41(~) >ti2(z),.. ‘“””., ON (z)] are eige;solutions
in layer (m).

In the presence of other inhomogeneous layers as in Fig. 1,

the potential in layer (m) can be expressed as

where zm = z + d~ and .z~ = ZO+ dm. The first term in

the bracket decays in the positive z direction, and the second

term decays in the negative z direction. At z = – dm, define——
a reflection matrix Rn~ which relates the upward-decaying

potential to the downward-decaying potential as
—

[

——

1Am =Enm. Bm + ~ iml.e-h-mz~ . Jm(xo) . (8)

——
Similarly, define another reflection matrix Rum at z = –dm_l

as

From (8) and (9), Am and ~~ are solved explicitly as

— —

~Rnm.[e-x-mhm. RumE~l.e-km(hm-z~)
—

+ i2j1.e-imz~] . Jm(ao)
— —

Bm = f[~ –e-i”h”. =Rum . e–~mhm. E“m ]-l

— — ––1 ==

~ e-R~h~. Rum .[e-i~h~. – –%rn . Km . e–Kmz~

=—

+ Kml e
-Em(hm-,~q . &(XO)

(lo)

The potential in layer (m) can thus be written in a compact

form as

—— — ——
. inm.[e-Kmhm. Rum.K~l.e-K~(h--z~)

— —

+ Rjl.e-i~z~] + e-K~(h~-2-)

. [7 - ~um.e-Emhfi.~nm.e-R~h~]-l.fium

. [e-%+R E-l -Emz:nm. m.e

+i~l.e ‘Rm(hm-z;)]+i~l.e-i’-lz--”~l }.

(12)

The potential in layer (1) with 1< m can be expressed as

dz(~, ~) = W(z) “ [e-R’Z’ + e-;’ (h’-”) =UZ e-~’’ h’] . Al.
(13)

Imposing the boundary condition that potential is continuous

at z = —din-l, we have
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Take the inner product of Em–l ($)~m- 1(z) with (14) to obtain

— —

An_l = po[ ~ +e-=~-’h~-’. ~ufm-l) . e-R~-’h~-’]’1
— —— —

“ H(m-l)rn . Tmm (hm, ~A) “ $m(~o) (15)

where =~P = ($~ (z), c~(x)j~ (x) ). Imposing the boundary
condition that the potential and the normal electric flux density

are continuous at z = –c&, we have

j:(z) . [ 7 +e-fi’h’. ~u~ .e-E’k[] . xl
—

= ~;+l(~) ~ [ ~ + ~U(l+l) ] e-i’+ ’h’+’ ~ AJ+I (16)
—

cl(z)tj~($). iZZ . [ 7 –e–i’h’. iuZ . e
G&,] . At

——
= cl+l(x)i;+l(~)”~1+1

.[y _ ~u(l+l)] .e-=t+lb+l.At+,. (17)

Take the inner product of cl (~)~z (x) with (16) to have

— —

Al = [ 7 +e-=’k’. RUZ . e-R’h’] ‘1. fi~(~+~)

. [ 7 + ~uf~+l~ ] . e-=’+ ’h’+’ . A1+I. (18)

Take the inner product of ~1 (z) with (17) to have

—

~~ .[ 7 –e-R’h’. Ru, .e-z’h’] ~2,
=t ——

n ~(1+1)1 . ~1+1 . [ T – jiu~~+l~ ] ~ e-K’+ lhi+l . A~+I.

(19)

From (18) and (19), we obtain the recursive relation between

the reflection matrices as

.

Ql+l)

—.
{[

~ _e–Zh . ~“1 . e–h] -1. F;l . E;l+l)l =. Kl+l

—
–~lh . &ul . e+[; +e –

-~,h,] “ fil(l+l) ‘1

}

{[
~ _e–%T ~ul .e-iq-l. Z;l . E;l+l)l =. Kl+l

)
- [ ~ +e-=’h’. EU ~e-=’h’] ‘l. ii~~~+~~ . (20)

Similarly, the potential in layer (1) with 1 > m can be

expressed as

~1(~, ~) = j~(~) . [e-i’”. &Z +eZ[z’] . El. (21)

Imposing the boundary condition that potential is continuous

at z = –dm, we have

— —— —

Bm+I = PO [e
–im+lhm+l . ~n(m+l) +e~m+d%+l] –1

— —— —

. H(m+I)m “ Tmm (0, ‘&) “ ‘4zlz(zo). (22)

Imposing the boundary condition that the potential and the

normal electric flux density are continuous at z = —dl, we

obtain the recursive relation between the reflection matrices as
—
~nl

—

-{[

— — —— —
— ; –e-~l+lb+l. ~n(l+l) . e-Kt+lht+l] -1

( )

–1 =

. F~ll . fi;l+l)l . K1

—
+[l+e- ~i+lk+l . ; –KL+lhl+l

n(l+l) . e
,-1

–1

}

–1

< ~1(1+1)

{[

—— — — —

j _e-~l+l~t+l. fin(t+l) . e-~l+l~t+l] -]

1

‘-( )

=t –1 =

“Kz+l “ H(~+l)Z .Kl

_ [~ +e-~+l~+. ~n(t+l) .e-~-+lh+l]-l. fi~~+l) }

(23)

Consider a microstrip line embedded in layer (m) with a

specific voltage applied on the strip surface, then the potential

distribution in layer (m) can be expressed in terms of the

surface charge density p(x) as

+m(~, ~) = i:($)” Fmm (%, & ) ~~Z2 dz’p(x’)~~(z’).
$1

(24)

The potential on the strip surface is equal to the applied

voltage. Thus, an integral equation is obtained

/

=2
J&(z). Fmm (.z~, z~) ~ dz’p(x’)~m(z’) = V,

xl

X15X5X.2, (25)

To solve (25), we first choose a set of basis functions to

represent the charge density distribution as

P

p(x’) = ~ Clpfp(z’) (26)

p=l

where ~P(z’ )‘s are linear local basis functions. Substituting

(26) into (25) and using the same set of basis functions as the

weighting functions, the following matrix equation is obtained

=V 1 dxfq(x),
xl

(&, 4) “ Lfp(fo,L(x’))%

l<q <P. (27)

The capacitance matrix of microstrip lines is then derived from

the charge distribution.

III. NUMERICAL RESULTS

In Fig. 2, the effective dielectric constant of a microstrip

line is shown as a function of the relative permittivity of the

substrate under the inhomogeneous layer. The results agree

reasonably with those in [12].

Next, two periodical substrate structures similar to that in

[101 is modeled. In Fiz 3, the capacitance of the microstrip. .
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Fig. 3. Capacitance variation as the periodical substrate is laterally shifted,
eg = 5.5, + = 3.6.

line is shown as a function of lateral shift of the periodical

substrate relative to the strip. In the substrate, the shaded areas

represent glass fiber and the white areas represent epoxy. As

more glass fiber is laterally shifted underneath the strip, the

capacitance increases. The variation range is smaller for the

structure with three interleaving layers. Because the mixture

of epoxy in between fiber glass areas reduces the relative

permittivity underneath the strip, thus the shift of substrate

produces less significant permittivity change than the other

configuration.

In Fig. 4, we present the effective dielectric constant of a

microstrip line with an air pocket underneath the supproting

film. The air pocket is observed to increase the phase velocity
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Fig. 4. Effective dielectric constant affected by the air pocket underneath

the microstrip line.

lG=l”OJ
10– ~=w~ 1

9

T

,~:

G = 0.8
y

8 -0

i

/G=0.6

7
N ,,;/ G = 0.4

\ &
‘+6

f

?’ ,’
< ,’

UY ?’ /’
, /’

5 -y
,’ /’

o .’ ,’

1

. .’ ‘ G = 0.2
,;.“ : ,, ’,/,

4 ,,, ,.,
. . .

.. -:. -
,.-

--:-
3

- .-’-
------

I
fo.3 J10-2 10-1 100

d

Fig. 5. Effective dielectric constant affected by the high permittivity enclo-

sure.

of the signal along the strip, and the effect is more significant

with a larger pocket.

On the other hand, the phase velocity may be reduced by

enclosing the strip with a high permittivity material. As shown

in Fig. 5, the larger the area with high permittivity material, the

slower the quasi-TEM signal will propagate. In both Figs. 4

and 5, the effective dielectric constant converges to that with

a homogeneous substrate as d approaches zero.

Heat treatment is applied in certain applications when

depositing micostrips onto the substrate, which may cause

permittivity variation in the substrate right underneath the strip.

In Fig. 6, we show the capacitance of two coupled rnicrostrip

lines with permittivity variation in the area underneath the

strips. Both the self and mutual capacitance increase with
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Fig. 6. Capacitance ofcoupled microstrip lines affected by the permittivity
under the strips.

increasing permittivity. The capacitances with G. = 12 are

those with a homogeneous substrate.

In Fig. 7, the effective dielectric constant of two coupled

microstrip lines attached to a corrugated substrate surface is

presented. The corrugation is used to model surface roughness.

The effective dielectric constants of the even and the odd

modes are defined as

where Cl 1 and C12 are the self and mutual capacitance per

unit length of two coupled strips embedded in inhomogeneous

substrates, C~l and C~2 are the self and mutual capacitance

per unit length of the stips with all dielectrics replaced by

free space.

The effective dielectric constant of the even mode is higher

than that of the odd mode. Either increasing the corrugation

depth d or period P reduces e.ff because more free space is

mixed with the substrate near the strips.

Next, consider protrusion or indentation of the substrate. In

Fig. 8, both the self and mutual capacitances increase when

the substrate is indented and the strip is plated at the bottom

of the dent. In such case, the electric field tends to concentrate

near the bottom of the configuration, which has a higher

permittivity. When the strip is deposited on top of a protrusion,

part of the electric field remains in the free space, and the

capacitance decreases. The capacitances with d = O are those

with a homogeneous substrate.

In Fig. 9, we show the effective dielectric constant of the

odd mode for two coupled microstrip lines deposited on a

film with an air pocket beneath. The phase velocity increases

when the depth or width of the pocket is enlarged. Similar

observations can be found with the even mode as shown in

Fig. 10. In both figures, the effective dielectric constants tend

to converge to those with a homogeneous substrate, but the
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Fig. 7. Effective dielectric constant affected by the corrugated substrate
surface.
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Fig. 8. Capacitance of coupled microstrip lines affected by the protrusion or

indentation under the strips.

convergence is not as obvious as that for the single strip case

shown in Figs. 4 and 5.

Finally in Figs. 11 and 12, we show the effective dielectric

constants of two coupled microstrip lines with a high perrnit-

tivity material under them. The effective dielectric constant

increases as the depth or width of the high permittivity area is

enlarged. The convergence to the effective dielectric constant

with a homogeneous substrate is more obvious than that in

Figs, 9 and 10.

All the results demonstrate that this technique can be applied

to model microstrip lines with more complicated substrates

such as with periodical loading of glass fibers (to enhance



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44, N0. 10, OCTOBER 1996

6, 1

5 -

4.5 -

4 -

3.5 -
-----

3 -

2.5 -

2 -

e
1.5 -

\

‘&

I I
/0.3 10-2 10-1 100

d

Effective dielectric constant of coupled microstrip lines affected by

the au pocket underneath the strips.

i o:~
-0

.,. . .
,.-”s .,”

u 13.f5- ,,,
,,,

\ ,.,
J ,.,

I
. .,

c

$
Wo -
. G = 0.8%
j

-0.210-3 10.2 10-1 100
d

Fig. 10. Effective dielec~ic constant ofcoupled microstrip llnes affectedly
the air pocket underneath the strips.

the substrate’s mechanical strength), air pocket (to increase

the phase velocity), high permittivity enclosure (to decrease

the phase velocity), permittivity variation due to thermal

treatment, surface roughness, protrusion or dent (to reduce or

enhance coupling). Other structures occurring in applications

with similar configuration can also be solved by using this

technique.

IV. CONCLUSION

A mode-matching approach combined with Galerkin’s

method is proposed in this paper to calculate the capacitance

matrix of microstrip lines embedded in an inhomogeneous

stratified medium. The kernel of the integral equation

is expressed in terms of eigenmodes solved numerically.

Galerkin’s method is applied to solve the charge distribution

n
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Fig. 11. Effective dielectric constant of coupled microstrip lines affected by

the high permittiwty zone in the substrate.
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Fig. 12 Effective dielectric constant of coupled microstrip lines affected by
the high permittivity zone in the substrate.

and hence the capacitance matrix. Several inhomogeneous

dielectric profiles are studied to understand the effects

of inhomogeneities on the capacitance and other related

parameters like effective dielectric constant and phase velocity.
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