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Capacitance of Microstrip Lines
with Inhomogeneous Substrate

Jean-Fu Kiang, Member, IEEE

Abstract— A mode-matching approach combined with
Galerkin’s method is proposed in this paper to calculate
the capacitance matrix of microstrip lines embedded in an
inhomogeneous stratified medium. Eigenmodes in each layer
is first solved numerically, and the potential in each layer
can be expressed in terms of these eigenmodes. Coupling
between two sets of eigenmodes in contiguous layers are
described by defining reflection matrices. A Green’s function
is thus obtained in terms of these eigenmode sets to relate the
potential to a line charge. Integral equation is then constructed
relating the charge distribution and the imposed voltage on the
microstrip surface. Galerkin’s method is next applied to solve the
charge distribution and hence the capacitance matrix. Several
inhomogeneous profiles are studied to understand the effects of
inhomogeneities on the capacitance and relevant parameters.

I. INTRODUCTION

OR a microstrip deposited at the interafce between a

dielectric and free space, approximate closed form for
capacitance is plausible [1]. Conformal mapping technique has
been applied to calculate the capacitance matrix of several
microstrips lying in the same plane enclosed by a rectangular
conducting box [2].

For several microstrip lines emdedded in different layers of
a stratified medium, numerical methods are often resorted. In
[31-[51, a spatial domain approach using the free space Green’s
function has been developed to calculate the capacitance and
the inductance matrices of multiconductor transmission lines
located arbitrarily in a multilayered medium of finite extent.
The potential in the medium is expressed in terms of the
free charge at the conductor-dielectric interfaces and the total
charge at the dielectric-dielectric interfaces.

Variational method in the spectral domain has been used to
calculate the capacitance matrix of microstrips in an laterally
open structure [6], [7]. Perfect conductor planes can also be put
aside the whole layered structure to facilitate the analysis, and
the Green’s function within side walls are expressed in terms
of sinusoidal functions with discrete wave numbers [8], [9].

Each dielectric layer is assumed homogeneous in the spec-
tral domain analysis. However, some practical substrate ma-
terials contain inhomogeneities. For example, glass fibers
are implanted within an epoxy circuit board to enhance its
mechanical strength [10]. In [11], two microstrips are built on
a substrate with finite extent. A notch is cut in the substrate
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Fig. 1. Geometrical configuration of a line charge embedded in layer (m)
of a stratified inhomogeneous medium.

amidst two microstrips to reduce their coupling. The dielectric
constant underneath the microstrip can also be increased
locally to focus the power guided by the strip [12]. In such
cases, conventional spectral domain methods do not apply, and
the spatial domain approaches may render too many unknowns
to model the equivalent surface charge especially when the
dielectric constant is a continuous function of coordinates.

In this paper, we will derive an integral equation in the
spectral domain with discrete wave numbers. The kernel is
constructed based on the eigenmodes in each inhomogeneous
layer, which are solved numerically for arbitrary permitivity
profile.

II. FORMULATION

In Fig. 1, we show the configuration of a line charge source
in layer (m) of a stratified medium. The whole structure is
uniform in the y direction. In each layer, the dielectric constant
is a piecewise continuous function of z and is independent of
2. Two perfect electric conductor walls are located at x = 0
and z = a as the potential reference.

In the electroquasi-static (EQS) limit [13], potential in layer
(m) in the absence of charge source is obtained by solving
the following Laplace’s equation
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By separation of variables, ¢(z,z) can be expressed as a
product of ¥(x)n(z), and (1) is reduced to

d d
et (@) —em (@) d(2) = —K*(2)

& () = Kon(z)

Next, choose a set of basis functions S, () = \/2/asin(a,z)
with o, = pr/a. These basis functions have orthonormal
properties that {S,(xz), S,(z)) = 84, Where the inner product
is defined over the interval [0, a]. Expand the nth eigensolution
1n () by these basis functions as ¢, (z) = E}I)\;l bnpSp(),
and substitute it into (2). Take the inner product of S,(z) with
the resulting equation and apply the orthonormality property
of S (x)’s to obtain

Z
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N
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z)Sp(2))bpp, 1< g<N. (3)

From (3), N eigenvalues k2 and their associated eigenvectors
b, can be obtained. These eigensolutions are normalized to
have

<¢T(x);€m z - C by @
where the (g, p)th element of C,, is (Sy(x), €m (2)Sp(2)).

Next, consider a line charge with density py located at
(x0, 20) in layer (m) of the stratified medium. In the absence of
other layers, the potential is obtained by solving the Poisson’s
equation

(70 ent) g + s )2

= — Po r—2x zZ—2Q).
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The solution ¢(z, z) can be expressed in terms of the eigen-
solutions 1, (x) as

N
$(w,2) = ;Toqpp(x)%(mo)e—kpp_zd
p=1""°

= () K,y e Rmll ()

(6)
where l?m: lag [kl,luz, .,kN], 6—I:<m]z—z0| =
dlag . [6 k1|z—z0) 6—k2}z 20| 7e—kN|z—z0]], and
Pi(z) = [1/11(17),1/12(33),...,1/11\;(35)] are eigensolutions

in layer (m).
In the presence of other inhomogeneous layers as in Fig. 1,
the potential in layer (m) can be expressed as

bm(z,2) = l/)t (37)

e mZ'm.
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where z,, = z + d,, and 2], = 29 + d,,. The first term in
the bracket decays in the positive z direction, and the second
term decays in the negative z direction. At z = —d,;,, define

a reflection matrix ]_%nm which relates the upward-decaying
potential to the downward-decaying potential as

_1 :' , _
€ ¢m($0)]. (8)

Similarly, define another reflection matrix fi’,Um atz = —d,,_1

as

Hombm -Bp, :EUm -[e‘Rmhm -An % I_{

e Km0 z/‘zm(:co)} )
From (8) and (9), 4,,, and B,, are solved explicitly as
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The potential in layer (m) can thus be written in a compact
form as

G (2:2) = PPt () T (2m, Z}n) - Ym(mo) (1)
where
T’mm (Zm,Z;n)
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The potential in layer (I} with [ < m can be expressed as

oz, 2) e_K‘h’] - Ay

(13)
Imposing the boundary condition that potential is continuous
at 2z = —d,,_1, we have
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Take the inner product of €, —1 (%), —1(x) with (14) to obtain

Am—1=p0[1+e mrhmot, RU('m 1) - e

: H(m—l)m *Trm (hma Zm) : 7/"m(7;0) (15)

where H = (¥q(), €q(x)¥%(z)). Imposing the boundary
condition that the potential and the normal electric flux density
are continuous at z = —d;, we have
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Take the inner product of +;(x) with (17) to have
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From (18) and (19), we obtain the recursive relation between
the reflection matrices as
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Similarly, the potential in layer (I) with I > m can be
expressed as

e Kb Ry e~ Kit]
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Imposing the boundary condition that potential is continuous
at z = —d,,, we have

- > = = -1
Bm+1 = po [e Koyiihmyt, Rﬁ(m+1) +6Km+1hm+1]

Imposing the boundary condition that the potential and the
normal electric flux density are continuous at z = —d;, we

(22)
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obtain the recursive relation between the reflection matrices as
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Consider a microstrip line embedded in layer (m) with a
specific voltage applied on the strip surface, then the potential
distribution in layer (m) can be expressed in terms of the
surface charge density p(z) as

_ = T2 _
b(2,2) = B(&) T Goms 1) [ a0V,
" 24)
The potential on the strip surface is equal to the applied
voltage. Thus, an integral equation is obtained

Ps@): T ()« [ " de! ol Yo () =

21 Lo < 29, (25)

To solve (25), we first choose a set of basis functions to
represent the charge density distribution as

P
a') = Z ap fp(z")

where f,(z')’s are linear local basis functions. Substituting
(26) into (25) and using the same set of basis functions as the
weighting functions, the following matrix equation is obtained

Z (fol=)
v / duf,(z),

The capacitance matrix of microstrip lines is then derived from
the charge distribution.

(26)

E(2)) T (2 2hn) - (@), B (@)t

1<q<P 27

III. NUMERICAL RESULTS

In Fig. 2, the effective dielectric constant of a microstrip
line is shown as a function of the relative permittivity of the
substrate under the inhomogeneous layer. The results agree
reasonably with those in [12].

Next, two periodical substrate structures similar to that in
[10] is modeled. In Fig. 3, the capacitance of the microstrip
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Fig. 2. Effective dielectric constant of a microstrip line affected by the

permittivity of the lowest substrate layer, o and *: results from [12].
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Fig. 3. Capacitance variation as the periodical substrate is laterally shifted,
€g = 5.5, €e = 3.6.

line is shown as a function of lateral shift of the periodical
substrate relative to the strip. In the substrate, the shaded areas
represent glass fiber and the white areas represent epoxy. As
more glass fiber is laterally shifted underneath the strip, the
capacitance increases. The variation range is smaller for the
structure with three interleaving layers. Because the mixture
of epoxy in between fiber glass areas reduces the relative
permittivity underneath the strip, thus the shift of substrate
produces less significant permittivity change than the other
configuration.

In Fig. 4, we present the effective dielectric constant of a
microstrip line with an air pocket underneath the supproting
film. The air pocket is observed to increase the phase velocity
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of the signal along the strip, and the effect is more significant
with a larger pocket.

On the other hand, the phase velocity may be reduced by
enclosing the strip with a high permittivity material. As shown
in Fig. 5, the larger the area with high permittivity material, the
slower the quasi-TEM signal will propagate. In both Figs. 4
and 5, the effective dielectric constant converges to that with
a homogeneous substrate as d approaches zero.

Heat treatment is applied in certain applications when
depositing micostrips onto the substrate, which may cause
permittivity variation in the substrate right underneath the strip.
In Fig. 6, we show the capacitance of two coupled microstrip
lines with permittivity variation in the area underneath the
strips. Both the self and mutual capacitance increase with
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Fig. 6. Capacitance of coupled microstrip lines affected by the permittivity
under the strips.

~ increasing permittivity. The capacitances with ¢, = 12 are
those with a homogeneous substrate.

In Fig. 7, the effective dielectric constant of two coupled
microstrip lines attached to a corrugated substrate surface is
presented. The corrugation is used to model surface roughness.
The effective dielectric constants of the even and the odd
modes are defined as

e(e) — (jll + C’12 6(0) _ (711 — (12
F O+ Oy of T 0 - Ch

where C1; and (43 are the self and mutual capacitance per
unit length of two coupled strips embedded in inhomogeneous
substrates, C¥; and C?, are the self and mutual capacitance
per unit length of the strips with all dielectrics replaced by
free space.

The effective dielectric constant of the even mode is higher
than that of the odd mode. Either increasing the corrugation
depth d or period P reduces c.¢ because more free space is
mixed with the substrate near the strips.

Next, consider protrusion or indentation of the substrate. In
Fig. 8, both the self and mutual capacitances increase when
the substrate is indented and the strip is plated at the bottom
of the dent. In such case, the electric field tends to concentrate
near the bottom of the configuration, which has a higher
permittivity. When the strip is deposited on top of a protrusion,
part of the electric field remains in the free space, and the
capacitance decreases. The capacitances with d = 0 are those
with a homogeneous substrate.

In Fig. 9, we show the effective dielectric constant of the
odd mode for two coupled microstrip lines deposited on a
film with an air pocket beneath. The phase velocity increases
when the depth or width of the pocket is enlarged. Similar
observations can be found with the even mode as shown in
Fig. 10. In both figures, the effective dielectric constants tend
to converge to those with a homogeneous substrate, but the
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convergence is not as obvious as that for the single strip case
shown in Figs. 4 and 5.

Finally in Figs. 11 and 12, we show the effective dielectric
constants of two coupled microstrip lines with a high permit-
tivity material under them. The effective dielectric constant
increases as the depth or width of the high permittivity area is
enlarged. The convergence to the effective dielectric constant
with a homogeneous substrate is more obvious than that in
Figs. 9 and 10.

All the results demonstrate that this technique can be applied
to model microstrip lines with more complicated substrates
such as with periodical loading of glass fibers (to enhance
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the substrate’s mechanical strength), air pocket (to increase
the phase velocity), high permittivity enclosure (to decrease
the phase velocity), permittivity variation due to thermal
treatment, surface roughness, protrusion or dent (to reduce or
enhance coupling). Other structures occurring in applications
with similar configuration can also be solved by using this
technique.

IV. CONCLUSION

A mode-matching approach combined with Galerkin’s
method is proposed in this paper to calculate the capacitance
matrix of microstrip lines embedded in an inhomogeneous
stratified medium. The kernel of the integral equation
is expressed in terms of cigenmodes solved numerically.
Galerkin’s method is applied to solve the charge distribution
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and hence the capacitance matrix. Several inhomogencous
dielectric profiles are studied to understand the effects
of inhomogeneities on the capacitance and other related
parameters like effective dielectric constant and phase velocity.
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